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Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis
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The noiseless Burgers equation in one spatial dimension is analyzed from the point of view of a diffusive
evolution equation in terms of nonlinear soliton modes and linear diffusive modes. The transient evolution of
the profile is interpreted as a gasright hand solitons connected by ramp solutions with superposed linear
diffusive modes. This picture is supported by a linear stability analysis of the soliton mode. The spectrum and
phase shift of the diffusive modes are determined. In the presence of the soliton the diffusive modes develop
a gap in the spectrum, and are phase shifted in accordance with Levinson’s theorem. The spectrum also
exhibits a zero-frequency translation or Goldstone mode associated with the broken translational symmetry.
[S1063-651%98)01002-2
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[. INTRODUCTION has been advanced, recovering in a simple way some of the
results from the operator product, instanton, and replica
This is the first of a series of papers dedicated to an analymethods.
sis of aspects of the Burgers equation in one spatial dimen- It turns out that the driven Burgers equatidnl) for gen-
sion. Driven with noise, this equation has the form eral \ in fact plays a paradigmatic role in modern nonequi-
librium physics and describes a variety of apparently unre-
P lated phenomena. In addition to modeling turbulence in one
u . : ) .
—=pV2Uu+ruVu+¢, 1.2 dimensional fluid flow, the equation has also been used to
at describe large scale pattern formation in astrophyElés;
elastic lines in random media, e.g., vortices in superconduct-
whereu is the field in questiony a damping constant or 0rs; and growing interfaced9].
viscosity controlling the strength of the linear dissipative [N the context of stochastic growth the Burgers equation
term, and\ a parameter characterizing the strength of the(1.1) governs the dynamics of the local slope=Vh of an
nonlinear mode coupling or convective term. The whiteinterface and is driven by conserved short range noise, i.e.,
noise ¢, characterizing the stochastic drive, is usually as<£=V 7, wherez is correlated according to

sumed to have a Gaussian distribution, and is correlated ac- o , ,
cording to (n(x,O)p(x" t"))=A8(x=x")s(t—t'). (1.3

The equation then takes the form

(EDEX 1)) =K(x=x")a(t—t"), (1.2

Ju
—=vV2u+\uVu+Vy, 1.4
whereK(x—x") accounts for the spatial correlations. a " 7 1.4

Fora=—1 and£=0, Eq.(1.1) was originally proposed
by Burgers[1] as a model for irrotational or vorticity-free and the growing interface in terms of the height fi¢id
hydrodynamics in order to describe one dimensional turbu=Ju dx is governed by the much studied Kardar-Parisi-
lence[2-4]. In the noiseless case the large scale structure i€hang equatio19,20
dominated by shock waves and a detailed study of the tran-

sient decaying turbulence has been carried[butl1]. @_ 2 ﬁ 2
The forced case fof# 0 was first considered by means of at vViht 2 (V)" 7. €9
a dynamic renormalization group analysis in the context of
long time tails in hydrodynamickl2]. Recently, the case of In a recent lettef{21] we analyzed the noisy Burgers

forced turbulence with random stirring at large length scalegquation by a mapping of an equivalent discrete solid-on-
has received much attention, and has been treated by a vaselid model onto a spig-magnetic chain and a subsequent
ety of methods such as operator product expansj@8§  transition to a continuum field theory in the large spin limit.
instanton calculation$14], and replica method§15]; see  The approach provided a Hamiltonian description and gave
also Ref.[16]. Also, a more heuristic approa¢t7] to the insight into the strong coupling behavior of the noisy Bur-
stochastic dynamics of nucleation and coalescence of shoclggrs equation. In particular, the dynamic scaling expozent

=3 turns out to be determined by the dispersion Bwp?

for the nonlinear soliton or shock wave solutions of the

*Permanent address: Institute of Physics and Astronomy, UniverHamiltonian field equations, replacing the noisy Burgers

sity of Aarhus, DK-8000 Aarhus C, Denmark. equation.
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We have recently generalized and unified the approach ir 4
Ref.[21] within the framework of the path integral formula- u
tion of the Martin-Siggia-Rose techniqugz2]. The method
is based on a weak noise saddle point approximation to the
path integral, akin to the instanton methods advanced in the
case of forced turbulence with stirring at large length scales

mentioned above, and yields soliton or shock wave solutions kink
of similar character as in the noiseless case. Details of this me r~ «
work will be presented in a forthcoming paper; for a brief \N o

account we refer to Ref23].

Since the dynamical aspects of theiselesor determin-
istic Burgers equation, in particular its nonlinear soliton
modes and superposed diffusive modes, play a decisive rol
in our analysis of the noisy case, we have found it conve-
nient to break up our presentation, and in the present pape
begin with a brief analysis of the noiseless case with special W
emphasis on the nonlinear soliton modes and their interac- eagualaparna Piosbasap Mo e x
tion with the linear diffusive spectrum. The present paper

thus serves as a prelude’ present|ng and d|scuss|ng some feaJ:IG 1. Here we ShOW in arbitrary Units the transient eVOIUtiOn
tures which will persist in the presence of noise. of the slope fieldu from an arbitrary initial configuratiom,. The

The noiseless Burgers equation has the form transient morphology consists of propagatinght hand solitons
connected by ramps with superposed damped diffusive modes. Both

Ju the solitons and diffusive modes transport energy which is dissi-
—=pV2u+ruVu. (1.6 pated predominantly at the soliton positions. At long times the pro-
at file decays unless it is driven by currents at the boundaries, corre-
sponding to a nonvanishing slope.

Here v is a damping constant controlling the strength of the
linear dissipative term. The parametercharacterizes the 2
strength of the nonlinear mode coupling term. Roe —1 _ -1/2 -
Eq. (1.6) was introduced by Burgefd] as a model for irro- Cx.=[4mt] exp{ 4vt}’ (112
tational hydrodynamics. In the present context for general

we consider Eq(1.6) as providing a description of the slope andu is given by Eq.(1.9).

field u=Vh for a growing interface governed by the noise-  The Cole-Hopf transformatiofEgs.(1.8) and(1.9)] thus

less or deterministic Kardar-Parisi-Zhang equafi20,24 permits a rather complete analysis of the Burgers equation.
The relaxational dynamics of the equation is controlled by

@:szhjL A (Vh)2 1.7 solitons connected by smooth regions; in the inviscid limit
at 2 ' ' v—0 the solitons become shocks connected by ramps

_ _ . [2,4,7,8,20. Although the nonlinear character of the equa-
It is an interesting property of the Burgers equati®r®)  tion prevents the application of a superposition principle, we
that it is exactly soluble in the sense that the nonlinear Colecan still from a qualitative point of view envisage that an

Hopf transformatior{ 25,26 initial configurationug(x) “contains” a certain number of
solitons or smoothed shocks. As time progresses the configu-
w=exp L fXUdX (1.8 ration passes through a transient regime dominated by a gas
2 ’ of propagating and coalescing solitons with superposed lin-

ear diffusive modes. At infinite times the configuration even-
v tually decays, owing to the inviscid term in E€..6). This
u=-—Vinw (1.9 qualitative behavior is depicted in Fig. 1.
It is instructive to compare the nonlinear irreversible and

allows for an exact mapping onto the linear diffusion equa-dissipative Burgers equatiqi.6) with the nonlinear revers-

tion ible and dispersive evolution equatidi®y]: The equation of
motion for the¢* field theory,
ow
— =V, (1.10 2
ot J —v2 2 3.
W_V ¢>+m d— NP>, (113

which can be simply analyzed. For given initial data

u(x,t=0)=Uuo(x), we thus have the complex nonlinear Schiinger equation,

, (1.1 0
- R N (114

)\ fx’ d 1"
5 Upgax

whereG(x,t) is the Green’s function for the diffusion equa-
tion (1.10 and the sine-Gordon equation,

w(x,t)= f G(x—x',t)exp
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92 ) . ilean transformation accompanied by a space and time de-
iz =~V ot sing. (1.19  pendent phase shift in the wave function, the Galilean trans-

formation of the Burgers equation is nonlinear in the sense
that the slope field is also shifted. Furthermore, the nonlinear

In addition to the linear dispersive modes obtained Xor i o )
coupling strength\ enters explicitly in the Galilean symme-

=0, the above evolution equations all support soliton solu

tions due to the dynamical balance between the linear dispel?y 9rOUP- _

sive term and the nonlinear term controlled XyAn initial In the absence of the nonlinear growth term Xc# 0, the

configuration thus again breaks up into a gas of moving soliBUr9ers equatior1.6) reduces to the linear diffusion equa-

tons and linear modes. In the case of the sine-Gordon anPn (1.10 supporting linear diffusive modes~ exp(~iwt

nonlinear Schidinger equations, the solitons preserve their™KX) with quadratic dispersion

identity under collisions owing to the complete integrability R 51

of these systems; this is not the case for #fefield equa- =TIk 20

tion; here the solitons become deformed under collisions.
In the present paper we analyze the Burgers equéti@h

from the point of view of a soliton-carrying dissipative evo-

lution equation. The paper is organized in the following way.

In Sec. Il we summarize the general properties of the Bur-

gers equation. In Sec. lll we discuss in particular the soliton U(k,w)=f dx dtexpiwt—ikx)u(x,t) »(t), (2.2

solution and comment on the morphology of a growing in-

terface. In Sec. IV we present a linear stability analysis of thgyhere 4(t) is the step function, i.e.(t)=1 for t>0,

Burgers equation, and discuss the translation mode and therty—0 for t<0, and 7(0)=3%, and denoting the initial

diffusive scattering modes. In Sec. V we summarize our réslope configuration byy(k)=u(k,t=0), we have the solu-
sults and present a conclusion. tion

An initial plane wave configuration thus decays with an en-
velope expf k’t). More explicitly, defining the Laplace-
Fourier transform

Il. GENERAL PROPERTIES Uo(k)

U(k,w):m, (23)

The Burgers equatiofil.6) has the form of a nonlinear
diffusive evolution e_quation_with a linear diffusi_ve term con- displaying a diffusive pole given by E@2.1). For the tem-
trollec_i by the damping or viscosity and a nonlinear mo.de poral correlations we obtain, in particular,
coupling term characterized by. In the context of fluid
motion the nonlinear term gives rise to convection as in the (y(k tyu(—k,t"))=(uy(k)ue(—k)Yexd — (t+t') vk?],
Navier-Stokes equatiofl—3]; for an interface the term cor- (2.9
responds to a slope dependent grojaH.
Under time reversat— —t and the transformation— where(---) denotes an average over the distribution of initial
—u, the equation is invariant providegd— —v. This indi-  values.
cates that the linear diffusive and the nonlinear convective or On the other hand, in the inviscid limit for vanishing
growth terms play a completely different role. The diffusive dampingr— 0 the Burgers equatiofl.6) takes the form
term is intrinsically irreversible, whereas the growth term,
corresponding to a mode coupling, gives rise to a cascade in Ju
wave number space and a genuine transient growth. The E:)‘UVU' 2.9
transformationt— —t is absorbed inu— —u or, alterna-
tively, \— —\, corresponding to a change of growth direc- which has an exact solution given by the implicit equation
tion. u=F(x+Aut), whereF is an arbitrary profile. Since the
We also note that the equation is invariant under the parpropagation velocity.u thus increases with the amplitude
ity transformatiorx— —x, providedu— —u. This feature is it follows that an initial configurationuy=F(x) breaks, and
related to the presence of a single spatial derivative in théhat shock waves are generated. From the form of the exact
growth term, and implies that the equation only supportssolutions it also follows that the shocks develop with right
solitons or shocks with one parity, thatright handsolitons.  parity; i.e., a positive discontinuity ini. As mentioned
We mention in passing that parity invariance is restored irabove, this is consistent with the parity breaking properties
the case of the noisy Burgers equation. This interesting assf Egs.(1.6) and(2.5). Searching for a static solution of the

pect will be considered in a forthcoming paper. form u=A+B#n(x—X,), we find, by insertion,
The Burgers equation is also invariant under a more fun-
damental symmetry, namely, the Galilean symmetry group. u(x)=|uy|n(x—xg), (2.6

In fact, boosting the equation to a moving frame with veloc-
ity AUy, X—X—\Uot it is easily seen by inspection, using With arbitrary amplitudelu, |; a moving shock is then ob-
alat— al at+\u,yV, that the equation remains invariant pro- tained by applying a Galilean boost, i.e—Xx—\ugt,

vided we shift the amplitude by u, i.e.,u—u+u,. We U—U+Up, yielding shock solutions of Eq2.5). It is also

note that unlike thei* and sine-Gordon equatiolis.13 and  €asily seen that Eq2.5) supports ramp solutions of the form
(1.19 which are invariant under a linear Lorentz transforma-
tion with no change in the field amplitude and the nonlinear

X
Schralinger equatior(1.14) which is invariant under a Gal- u(x)=const- @7

N
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The general picture that emerges in the inviscid limit A
v—0 is thus that an initial configuratiamy=F(x) breaks up u
into a series ofight hand shocks connected by ramps; this
picture is in fact substantiated by a steepest descent analysis
of the Cole-Hopf transformatiofEgs.(1.8) and(1.9)] in the
inviscid limit [8]. The time evolution is similar to the one
depicted in Fig. 1, except that the solitons are sharp. Further-
more, in the absence of dissipation the transient regime ex-

tends to infinite times. In terms of the height fiehl v U+

= fu dx, the morphology consists of cusps connected by

convex parabolic segmenit20,24. ' - X
In the presence of damping or viscosity this picture is not u-#j %o

radically changed. The damping leads to an overall relax- ~1)/7:(u+ -Iu )

ation of the initial configuration where the energy, based on
the hydrodynamical definitiorfu?dx (kinetic energy, is

mainly dissipated in the shocks; in other words, the nonlinear
mode coupling term gives rise to spatially confirrext zones h (b)
for energy dissipation associated with the solitons.

IIl. SOLITON SOLUTION

Although the Burgers equatiofl.6) admits an exact so- -—
lution by means of the Cole-Hopf transformatidigs. (1.8)
and(1.9)], we find it useful for our purposes to approach Eg. .
(1.6) as a diffusive nonlinear evolution equation and, follow- '
ing the corresponding analysis of Egd&l.13—(1.195, to :
search for permanent profile soliton solutidr&y]. Setting Xo
u(x,t)=u(x—wvt), wherev is the propagation velocity, and
usingd/dt=—vV, Eq. (1.6 can be integrated once

slope u_x

FIG. 2. In(a), we show a single moving soliton profile propa-

A gating to the left, and iffb) the corresponding smoothed cusp in the

—vu=vVu+§ u’+const. (3.)  growth profile. This configuration is driven by currents at the
boundaries, corresponding to nonvanishing and is persistent in

. . . time. In the plots we have chosen arbitrary units.
Furthermore, imposing the boundary conditionosu. , P Y

Vu—0 forx— =0, appropriate for a single soliton solution, We have introduced the characteristic wave nuniqerset-
and subtracting Eq3.1) for x— *%, we obtain the soliton ting the inverse length scale of the static solitag;denotes

condition the center of mass position. The width of the soliton is of
order 1k, and, unlike thep? or sine-Gordon soliton, related
Uetu = — Z_U (3.2 to the amplitudeu, . In the inviscid limit v—0, the wave
o N ' numberk,— o and the soliton approaches the shock discon-

tinuity given by Eq.(2.6).
relating the propagation velocity of the soliton to the A moving soliton is obtained by applying a Galilean boost
boundary valuesi. . We note that Eq(3.2) is consistent X—X—A\Ugt and shifting the profile byiy. In terms of the
with the fundamental nonlinear Galilean symmetry, beingboundary valuesi. , we thus obtain the propagating soliton
invariant under the transformation—uv+2AUgp, U+— U4 solution
—Ug. In terms of the boundary values., we can also

express Eq(3.1) in the form Ug(X,) = U, t+u-
' 2
Vu= X (uy—u)(u—u-) (3.3 Up—u_ A
2v ' + tanh|— (U, —u_)(X—vt—Xp)
2 4y
which implies a positive slope ai between the boundary (3.6

valuesu. andu,>u_, corresponding to aight hand or
positive parity soliton in accordance with the symmetry
property discussed in Sec. Il. In the static lini&0, Eqg.
(3.2) impliesu, =—u_, thatis, a symmetric soliton, and by
guadrature Eq(3.3) yields the static soliton solution

with velocity v given by Eq.(3.2). In Fig. 2 we depict a
single soliton solution of the Burgers equation and the asso-
ciated smoothed cusp profile for the height field of a growing
interface.

Ug(X) = U, tanh[ky(x—Xo)], (3.4) IV. LINEAR STABILITY ANALYSIS
In order to investigate the properties of the linear diffu-
ks=Au,/2v. (3.5 sive modes in the presence of the nonlinear soliton mode we
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A 1
i Mes” o] = (4.4

This zero frequency mode has a particular significance for
soliton-carrying systems. Sincéugge<(duy/dx) X, it is
seen that the mode actually corresponds to an infinitesimal
translationdx of the soliton without changing its shape. This
mode thus restores the broken translational invariance, re-
sulting from the choice of a particular center of mass posi-
tion Xq for the soliton—a so-called translation mode. Such
Goldstone modes are quite generally associated with broken
symmetrie§ 27,29,31.

> X
B. Diffusive scattering modes
In a similar way the band of scattering states has the ex-
plicit form
FIG. 3. Here we sketch in arbitrary units the reflectionless Barg- 5 explikx)  k+ikgtani kg(x—Xg)] 4

man potentialvk?(1— 2/cosRk(x—xo)]). We also show the asso- Uss™ coshkg(X—Xg)] k—ikg , (4.9
ciated zero-frequency bound stdBS) or translation mode and the

band of scattering statéSS above the gapk? in the spectrum. with dispersion

here perform a linear stability analysis. Since a Galilean w=—iv(k*+ ki). (4.6)

transformation allows for a boost to a finite propagation ve-

locity, it is sufficient to consider the stability of the static The modes form a continuum of spatially decaying diffusive
soliton ug in Eg. (3.4). Settingu=ugy+ du we obtain, by states scattering off the soliton. We note that the dispersion
inserting into the Burgers equati¢h.6) to linear order indu law (4.6) for the diffusive spectrum, compared with Eg.1)

the equation of motion for the fluctuations about the solitonfor the linear case, has developed a gdg@=\2u?/4v de-

profile, pending on the soliton amplitude. For— + we have
Suserexdikx+iok)lexp(—kydx)) and Susecexpikx)exp
déu (—kdx]), respectively, where the plane wave part is phase
_ 2 ’ y
ot =V §u+)\UoV (5U+)\(VUO) ou. (41) shifted by the amount
Absorbing the first order derivative term by means of the _ _1 E
transformation 28] o(k)=2tan k| .7
ou The transmission coefficient is thus given bi(k)
5U2m, (4.2 =exdiaK)], i.e., |t(k)|?=1, yielding the reflection coeffi-

cientr(k)=0, since|r(k)|>=1—]t(k)|?=0. Consequently,
the soliton acts as a reflectionless transparent potential on the
diffusive modes which only experience a phase shift. We
also note that the bound state energy is given by the lpole

2 =ikg in the S matrix (k+iks)/(k—ikg); the residue in Eq.
— 5. (4.5) yields the bound state in E¢4.4). Furthermore, impos-
CoSHks(X=Xo)] ing periodic boundary conditions in a system of sktewe

and searching for solutions with time dependende
xexp(—iwt), we arrive at the linear eigenvalue problem

—iwsU=vV25U— ng 1-

4.3 obtain the density of diffusive modes
This equation has the same form as the one encountered in N 1 da(k)
the linear stability analysis of the sine-Gordon soliton + = —. 4.8

p=—
[27,29. Interpreted as a stationary ScHimger equation, Eq. 2m 2w dk

(4.3) describes a particle with energy and mass 1/2 in
the exactly soluble Bargman potential/cosi x. The spec-
trum is well known, and consists of a single bound state fo
w=0 and a band of scattering states for —iv(k>+ ki) 1 kK
[29,30. In Fig. 3 we sketch the potential and the band of Ap= S
scattering states.

For the change of density of states owing to the presence of
Ithe soliton,Ap=p—N/27, we have, inserting Eq4.7),

We note thatf/p dk=N—1 in accordance with Levinson's

theorem, i.e., the band of diffusive modes is depleted by one
The bound state solution fap=0 has the formélgs  mode corresponding to the zero frequency translation mode.

o 1/cosliky(x—xy)] and using Eq(4.2), In Fig. 4 we depict the phase shifted diffusive mode and the

A. Translation mode
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Au (@) bio
(@
- X
nk§
= k
Au (b) (®)
BS iKg
k-plane
. = X
!
/ ss
/ = K
u Z.
FIG. 5. In(a) we show the spectrum of diffusive modes in the
presence of a soliton. Unlike the quadratic dispersion for the linear

diffusion equation, the spectrum here exhibits a gkp depending
. ) . on the soliton amplitude. Ifb) we show the pole structure in the
FIG. 4. In(a) we ShO_W the_ phase-shlfted diffusive .mode SUper'complexk plane. The real axis corresponds to the band of scattering
posed on the static soliton, indicated by a dashed lindblnwe  gi4t0559  The pole in theS matrix on the imaginary axis corre-

depict the translation mode giving rise to a solid displacement Otsponds to the bound sta®S) or translation mode. The plots are in
the soliton without changing its shape, thus lifting the broken trans'arbitrary units

lational invariance. The plots are in arbitrary units.

. . e _odu(kt) d )
translation mode. In Fig. 5 we show the diffusive spectrum lim =— f u(x,t)dx= —f Vjdx, (4.12
(4.6) and the pole structure in the complex wave number kwo Ot dt
plane.

Finally, regarding the stability of the soliton, we note that Which vanishesprovidedthat there are no currents on the
the linear diffusive mode is damped accordingdss, exp boundaries<= = N/2. However, in the presence of a soliton
[T (K)t] with a damping constarit(k) = »(k*+k3). Inthe ~ there is an incoming curren(:=N/2)= —(A/2u)% and the
long wavelength limitk—0, T'(k) approaches a constant mode decays with a finite lifetime K in the long wave-
vk2=\2u?/4v, i.e., the gap in the diffusive spectrum. This length limit, corresponding to a gap in the spectrum of
result is, however, not in conflict with the usual argument of
a vanishingl' (k) for k— 0, characteristic of a hydrodynami- V. SUMMARY AND CONCLUSION
cal diffusive mode[31]. The argument generally follows
from the conservation of the local slope or velodityomen-
tum) implied by the structure of the Burgers equatidnb),
which can be written as a local conservation law

In the present paper we conducted a study of the well-
documented noiseless or deterministic Burgers equation, re-
garding it as a nonlinear diffusive evolution equation. Al-
though the nonlinear Cole-Hopf mapping to a linear
diffusive equation in principle allows for a rather complete
‘9_“ - Vi (4.10 analysis of the equation, we found it useful to emphasize the
ot b ' solitonic aspects, drawing on the parallel with other nonlin-

ear equations such as tgé¢ and the sine-Gordon equations.
with a current density Note, however, that unlike thé* or sine-Gordon equations,
where the soliton owes its stability to a balance between the
N dispersive effect of the linear term, tending to break up a
j=—Vu— 5 u2. (4.1 wave packet construction, ar_ld the cascade_ _effect in wave
number space due to the nonlinear term, stabilizing a particu-
lar wave packet fornithe solitor), the Burgers equation is
In the long wavelength limitk—0, the conservation law intrinsically dissipative and an initial configuration will
(4.10 usually implies that the damping constdntk) —0, eventually decay due to dissipationlessenergy is fed into
i.e., an infinitely long lived mode. This follows from the system. In this regard the Burgers soliton dissipative
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structure in that it owes its stability to the energy flux fed bythe relaxational by means of diffusion far= 0 become sub-
the nonvanishing currents entering at the boundaries. Theéominant in the sense that they develop a gap inithe
nonlinear term generating anverse cascade wave num-  spectrum.

ber space thus provides the energy transport to the center of In a subsequent paper we consider the Burgers equation
the soliton, where the energy is dissipated and the solitodriven by spatially uniform stochastic noise rather that deter-
owes its stability to the interplay between the linear dissipaministic currents at the boundaries. We find that the solitonic
tive term and the nonlinear mode coupling term. Nevertheaspects still determine the physics and that the soliton be-
less, it is useful to consider the soliton as the fundamentatomes abona fideelementary excitation in the underlying
elementary excitationin the Burgers equation determining field theory.

the nonlinear nonlocal relaxational aspects. As follows from

a steepest desqent anaIyS|§ in the inviscid I|m|{+Q, an ACKNOWLEDGMENTS

initial configuration evolves into a gas of propagating soli-

tons connected by ramps. The present linear stability analysis Discussions with M. H. Jensen, T. Bohr, M. Howard, K.
then shows that the linear modes which for 0 dominate B. Lauritsen, and A. Svane are gratefully acknowledged.
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