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Solitons and diffusive modes in the noiseless Burgers equation: Stability analysis

Hans C. Fogedby*
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

and NORDITA, Blegdamsvej 17, DK-2100 Copenhagen O” , Denmark
~Received 11 September 1997!

The noiseless Burgers equation in one spatial dimension is analyzed from the point of view of a diffusive
evolution equation in terms of nonlinear soliton modes and linear diffusive modes. The transient evolution of
the profile is interpreted as a gas ofright handsolitons connected by ramp solutions with superposed linear
diffusive modes. This picture is supported by a linear stability analysis of the soliton mode. The spectrum and
phase shift of the diffusive modes are determined. In the presence of the soliton the diffusive modes develop
a gap in the spectrum, and are phase shifted in accordance with Levinson’s theorem. The spectrum also
exhibits a zero-frequency translation or Goldstone mode associated with the broken translational symmetry.
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I. INTRODUCTION

This is the first of a series of papers dedicated to an an
sis of aspects of the Burgers equation in one spatial dim
sion. Driven with noise, this equation has the form

]u

]t
5n¹2u1lu¹u1j, ~1.1!

where u is the field in question,n a damping constant o
viscosity controlling the strength of the linear dissipati
term, andl a parameter characterizing the strength of
nonlinear mode coupling or convective term. The wh
noise j, characterizing the stochastic drive, is usually
sumed to have a Gaussian distribution, and is correlated
cording to

^j~x,t !j~x8,t8!&5K~x2x8!d~ t2t8!, ~1.2!

whereK(x2x8) accounts for the spatial correlations.
For l521 andj50, Eq. ~1.1! was originally proposed

by Burgers@1# as a model for irrotational or vorticity-free
hydrodynamics in order to describe one dimensional tur
lence@2–4#. In the noiseless case the large scale structur
dominated by shock waves and a detailed study of the t
sient decaying turbulence has been carried out@5–11#.

The forced case forjÞ0 was first considered by means
a dynamic renormalization group analysis in the context
long time tails in hydrodynamics@12#. Recently, the case o
forced turbulence with random stirring at large length sca
has received much attention, and has been treated by a
ety of methods such as operator product expansions@13#,
instanton calculations@14#, and replica methods@15#; see
also Ref.@16#. Also, a more heuristic approach@17# to the
stochastic dynamics of nucleation and coalescence of sh
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has been advanced, recovering in a simple way some of
results from the operator product, instanton, and rep
methods.

It turns out that the driven Burgers equation~1.1! for gen-
eral l in fact plays a paradigmatic role in modern noneq
librium physics and describes a variety of apparently un
lated phenomena. In addition to modeling turbulence in o
dimensional fluid flow, the equation has also been used
describe large scale pattern formation in astrophysics@18#;
elastic lines in random media, e.g., vortices in supercond
ors; and growing interfaces@19#.

In the context of stochastic growth the Burgers equat
~1.1! governs the dynamics of the local slopeu5¹h of an
interface and is driven by conserved short range noise,
j5¹h, whereh is correlated according to

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~1.3!

The equation then takes the form

]u

]t
5n¹2u1lu¹u1¹h, ~1.4!

and the growing interface in terms of the height fieldh
5*u dx is governed by the much studied Kardar-Pari
Zhang equation@19,20#

]h

]t
5n¹2h1

l

2
~¹h!21h. ~1.5!

In a recent letter@21# we analyzed the noisy Burger
equation by a mapping of an equivalent discrete solid-
solid model onto a spin-1

2 magnetic chain and a subseque
transition to a continuum field theory in the large spin lim
The approach provided a Hamiltonian description and g
insight into the strong coupling behavior of the noisy Bu
gers equation. In particular, the dynamic scaling exponenz
5 3

2 turns out to be determined by the dispersion lawE}pz

for the nonlinear soliton or shock wave solutions of t
Hamiltonian field equations, replacing the noisy Burge
equation.
r-
2331 © 1998 The American Physical Society
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We have recently generalized and unified the approac
Ref. @21# within the framework of the path integral formula
tion of the Martin-Siggia-Rose techniques@22#. The method
is based on a weak noise saddle point approximation to
path integral, akin to the instanton methods advanced in
case of forced turbulence with stirring at large length sca
mentioned above, and yields soliton or shock wave soluti
of similar character as in the noiseless case. Details of
work will be presented in a forthcoming paper; for a br
account we refer to Ref.@23#.

Since the dynamical aspects of thenoiselessor determin-
istic Burgers equation, in particular its nonlinear solito
modes and superposed diffusive modes, play a decisive
in our analysis of the noisy case, we have found it con
nient to break up our presentation, and in the present p
begin with a brief analysis of the noiseless case with spe
emphasis on the nonlinear soliton modes and their inte
tion with the linear diffusive spectrum. The present pap
thus serves as a prelude, presenting and discussing som
tures which will persist in the presence of noise.

The noiseless Burgers equation has the form

]u

]t
5n¹2u1lu¹u. ~1.6!

Heren is a damping constant controlling the strength of t
linear dissipative term. The parameterl characterizes the
strength of the nonlinear mode coupling term. Forl521
Eq. ~1.6! was introduced by Burgers@1# as a model for irro-
tational hydrodynamics. In the present context for general,
we consider Eq.~1.6! as providing a description of the slop
field u5¹h for a growing interface governed by the nois
less or deterministic Kardar-Parisi-Zhang equation@20,24#

]h

]t
5n¹2h1

l

2
~¹h!2. ~1.7!

It is an interesting property of the Burgers equation~1.6!
that it is exactly soluble in the sense that the nonlinear C
Hopf transformation@25,26#

w5exp F l

2n Ex

udxG , ~1.8!

u5
2n

l
¹ ln w ~1.9!

allows for an exact mapping onto the linear diffusion equ
tion

]w

]t
5n¹2w, ~1.10!

which can be simply analyzed. For given initial da
u(x,t50)5u0(x), we thus have

w~x,t !5E G~x2x8,t !exp F l

2n Ex8
u0dx9G , ~1.11!

whereG(x,t) is the Green’s function for the diffusion equa
tion ~1.10!
in
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G~x,t !5@4pnt#21/2 expF2
x2

4nt G , ~1.12!

andu is given by Eq.~1.9!.
The Cole-Hopf transformation@Eqs.~1.8! and ~1.9!# thus

permits a rather complete analysis of the Burgers equat
The relaxational dynamics of the equation is controlled
solitons connected by smooth regions; in the inviscid lim
n→0 the solitons become shocks connected by ram
@2,4,7,8,20#. Although the nonlinear character of the equ
tion prevents the application of a superposition principle,
can still from a qualitative point of view envisage that a
initial configurationu0(x) ‘‘contains’’ a certain number of
solitons or smoothed shocks. As time progresses the con
ration passes through a transient regime dominated by a
of propagating and coalescing solitons with superposed
ear diffusive modes. At infinite times the configuration eve
tually decays, owing to the inviscid term in Eq.~1.6!. This
qualitative behavior is depicted in Fig. 1.

It is instructive to compare the nonlinear irreversible a
dissipative Burgers equation~1.6! with the nonlinear revers-
ible and dispersive evolution equations@27#: The equation of
motion for thef4 field theory,

]2f

]t2 5¹2f1m2f2lf3; ~1.13!

the complex nonlinear Schro¨dinger equation,

i
]c

]t
5¹2c1lucu2c; ~1.14!

and the sine-Gordon equation,

FIG. 1. Here we show in arbitrary units the transient evoluti
of the slope fieldu from an arbitrary initial configurationu0 . The
transient morphology consists of propagatingright hand solitons
connected by ramps with superposed damped diffusive modes.
the solitons and diffusive modes transport energy which is di
pated predominantly at the soliton positions. At long times the p
file decays unless it is driven by currents at the boundaries, co
sponding to a nonvanishing slope.
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]2f

]t2 5¹2f1l sinf. ~1.15!

In addition to the linear dispersive modes obtained forl
50, the above evolution equations all support soliton so
tions due to the dynamical balance between the linear dis
sive term and the nonlinear term controlled byl. An initial
configuration thus again breaks up into a gas of moving s
tons and linear modes. In the case of the sine-Gordon
nonlinear Schro¨dinger equations, the solitons preserve th
identity under collisions owing to the complete integrabil
of these systems; this is not the case for thef4 field equa-
tion; here the solitons become deformed under collisions

In the present paper we analyze the Burgers equation~1.6!
from the point of view of a soliton-carrying dissipative ev
lution equation. The paper is organized in the following wa
In Sec. II we summarize the general properties of the B
gers equation. In Sec. III we discuss in particular the soli
solution and comment on the morphology of a growing
terface. In Sec. IV we present a linear stability analysis of
Burgers equation, and discuss the translation mode and
diffusive scattering modes. In Sec. V we summarize our
sults and present a conclusion.

II. GENERAL PROPERTIES

The Burgers equation~1.6! has the form of a nonlinea
diffusive evolution equation with a linear diffusive term co
trolled by the damping or viscosityn and a nonlinear mode
coupling term characterized byl. In the context of fluid
motion the nonlinear term gives rise to convection as in
Navier-Stokes equation@1–3#; for an interface the term cor
responds to a slope dependent growth@24#.

Under time reversalt→2t and the transformationu→
2u, the equation is invariant providedn→2n. This indi-
cates that the linear diffusive and the nonlinear convective
growth terms play a completely different role. The diffusi
term is intrinsically irreversible, whereas the growth ter
corresponding to a mode coupling, gives rise to a cascad
wave number space and a genuine transient growth.
transformationt→2t is absorbed inu→2u or, alterna-
tively, l→2l, corresponding to a change of growth dire
tion.

We also note that the equation is invariant under the p
ity transformationx→2x, providedu→2u. This feature is
related to the presence of a single spatial derivative in
growth term, and implies that the equation only suppo
solitons or shocks with one parity, that isright handsolitons.
We mention in passing that parity invariance is restored
the case of the noisy Burgers equation. This interesting
pect will be considered in a forthcoming paper.

The Burgers equation is also invariant under a more f
damental symmetry, namely, the Galilean symmetry gro
In fact, boosting the equation to a moving frame with velo
ity lu0 , x→x2lu0t it is easily seen by inspection, usin
]/]t→]/]t1lu0¹, that the equation remains invariant pr
vided we shift the amplitudeu by u0 , i.e., u→u1u0 . We
note that unlike theu4 and sine-Gordon equations~1.13! and
~1.15! which are invariant under a linear Lorentz transform
tion with no change in the field amplitude and the nonline
Schrödinger equation~1.14! which is invariant under a Gal
-
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ilean transformation accompanied by a space and time
pendent phase shift in the wave function, the Galilean tra
formation of the Burgers equation is nonlinear in the se
that the slope field is also shifted. Furthermore, the nonlin
coupling strengthl enters explicitly in the Galilean symme
try group.

In the absence of the nonlinear growth term forl50, the
Burgers equation~1.6! reduces to the linear diffusion equa
tion ~1.10! supporting linear diffusive modesu} exp(2ivt
6ikx) with quadratic dispersion

v52 ink2. ~2.1!

An initial plane wave configuration thus decays with an e
velope exp(2nk2t). More explicitly, defining the Laplace
Fourier transform

u~k,v!5E dx dt exp~ ivt2 ikx!u~x,t !h~ t !, ~2.2!

where h(t) is the step function, i.e.,h(t)51 for t.0,
h(t)50 for t,0, and h(0)5 1

2 , and denoting the initial
slope configuration byu0(k)5u(k,t50), we have the solu-
tion

u~k,v!5
u0~k!

2 iv1nk2 , ~2.3!

displaying a diffusive pole given by Eq.~2.1!. For the tem-
poral correlations we obtain, in particular,

^u~k,t !u~2k,t8!&5^u0~k!u0~2k!&exp@2~ t1t8!nk2#,
~2.4!

where^•••& denotes an average over the distribution of init
values.

On the other hand, in the inviscid limit for vanishin
dampingn→0 the Burgers equation~1.6! takes the form

]u

]t
5lu¹u, ~2.5!

which has an exact solution given by the implicit equati
u5F(x1lut), where F is an arbitrary profile. Since the
propagation velocitylu thus increases with the amplitudeu,
it follows that an initial configurationu05F(x) breaks, and
that shock waves are generated. From the form of the e
solutions it also follows that the shocks develop with rig
parity; i.e., a positive discontinuity inu. As mentioned
above, this is consistent with the parity breaking propert
of Eqs.~1.6! and~2.5!. Searching for a static solution of th
form u5A1Bh(x2x0), we find, by insertion,

u~x!5uu1uh~x2x0!, ~2.6!

with arbitrary amplitudeuu1u; a moving shock is then ob
tained by applying a Galilean boost, i.e.,x→x2lu0t,
u→u1u0 , yielding shock solutions of Eq.~2.5!. It is also
easily seen that Eq.~2.5! supports ramp solutions of the form

u~x!5const2
x

lt
. ~2.7!



i

is
ly

e
he
e

b

no
ax
o

ea

-

q
w-

d

,

in

y

try

y

of

on-

st

n

so-
ing

u-
we

-
he
he
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The general picture that emerges in the inviscid lim
n→0 is thus that an initial configurationu05F(x) breaks up
into a series ofright handshocks connected by ramps; th
picture is in fact substantiated by a steepest descent ana
of the Cole-Hopf transformation@Eqs.~1.8! and~1.9!# in the
inviscid limit @8#. The time evolution is similar to the on
depicted in Fig. 1, except that the solitons are sharp. Furt
more, in the absence of dissipation the transient regime
tends to infinite times. In terms of the height fieldh
5*u dx, the morphology consists of cusps connected
convex parabolic segments@20,24#.

In the presence of damping or viscosity this picture is
radically changed. The damping leads to an overall rel
ation of the initial configuration where the energy, based
the hydrodynamical definition*u2dx ~kinetic energy!, is
mainly dissipated in the shocks; in other words, the nonlin
mode coupling term gives rise to spatially confinedhot zones
for energy dissipation associated with the solitons.

III. SOLITON SOLUTION

Although the Burgers equation~1.6! admits an exact so
lution by means of the Cole-Hopf transformation@Eqs.~1.8!
and~1.9!#, we find it useful for our purposes to approach E
~1.6! as a diffusive nonlinear evolution equation and, follo
ing the corresponding analysis of Eqs.~1.13!–~1.15!, to
search for permanent profile soliton solutions@27#. Setting
u(x,t)5u(x2vt), wherev is the propagation velocity, an
using]/]t52v¹, Eq. ~1.6! can be integrated once

2vu5n¹u1
l

2
u21const. ~3.1!

Furthermore, imposing the boundary conditionsu5u6 ,
¹u→0 for x→6`, appropriate for a single soliton solution
and subtracting Eq.~3.1! for x→6`, we obtain the soliton
condition

u11u252
2v
l

, ~3.2!

relating the propagation velocityv of the soliton to the
boundary valuesu6 . We note that Eq.~3.2! is consistent
with the fundamental nonlinear Galilean symmetry, be
invariant under the transformationv→v1lu0 , u6→u6

2u0 . In terms of the boundary valuesu6 , we can also
express Eq.~3.1! in the form

¹u5
l

2n
~u12u!~u2u2!, ~3.3!

which implies a positive slope ofu between the boundar
valuesu6 and u1.u2 , corresponding to aright hand or
positive parity soliton in accordance with the symme
property discussed in Sec. II. In the static limitv50, Eq.
~3.2! impliesu152u2 , that is, a symmetric soliton, and b
quadrature Eq.~3.3! yields the static soliton solution

u0~x!5u1tanh @ks~x2x0!#, ~3.4!

ks5lu1/2n. ~3.5!
t

sis
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y
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We have introduced the characteristic wave numberks , set-
ting the inverse length scale of the static soliton;x0 denotes
the center of mass position. The width of the soliton is
order 1/ks and, unlike thef4 or sine-Gordon soliton, related
to the amplitudeu1 . In the inviscid limit n→0, the wave
numberks→` and the soliton approaches the shock disc
tinuity given by Eq.~2.6!.

A moving soliton is obtained by applying a Galilean boo
x→x2lu0t and shifting the profile byu0 . In terms of the
boundary valuesu6 , we thus obtain the propagating solito
solution

u0~x,t !5
u11u2

2

1
u12u2

2
tanh F l

4n
~u12u2!~x2vt2x0!G

~3.6!

with velocity v given by Eq.~3.2!. In Fig. 2 we depict a
single soliton solution of the Burgers equation and the as
ciated smoothed cusp profile for the height field of a grow
interface.

IV. LINEAR STABILITY ANALYSIS

In order to investigate the properties of the linear diff
sive modes in the presence of the nonlinear soliton mode

FIG. 2. In ~a!, we show a single moving soliton profile propa
gating to the left, and in~b! the corresponding smoothed cusp in t
growth profile. This configuration is driven by currents at t
boundaries, corresponding to nonvanishingu6 and is persistent in
time. In the plots we have chosen arbitrary units.
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here perform a linear stability analysis. Since a Galile
transformation allows for a boost to a finite propagation
locity, it is sufficient to consider the stability of the stat
soliton u0 in Eq. ~3.4!. Setting u5u01du we obtain, by
inserting into the Burgers equation~1.6! to linear order indu
the equation of motion for the fluctuations about the soli
profile,

]du

]t
5n¹2du1lu0¹du1l~¹u0!du. ~4.1!

Absorbing the first order derivative term by means of t
transformation@28#

du5
dũ

cosh@ks~x2x0!#
, ~4.2!

and searching for solutions with time dependencedu
}exp(2ivt), we arrive at the linear eigenvalue problem

2 ivdũ5n¹2dũ2nks
2F12

2

cosh2@ks~x2x0!#Gdũ.

~4.3!

This equation has the same form as the one encountere
the linear stability analysis of the sine-Gordon solit
@27,29#. Interpreted as a stationary Schro¨dinger equation, Eq
~4.3! describes a particle with energyiv and mass 1/2n in
the exactly soluble Bargman potential22/cosh2 x. The spec-
trum is well known, and consists of a single bound state
v50 and a band of scattering states forv52 in(k21ks

2)
@29,30#. In Fig. 3 we sketch the potential and the band
scattering states.

A. Translation mode

The bound state solution forv50 has the formdũBS
}1/cosh@ks(x2x0)# and using Eq.~4.2!,

FIG. 3. Here we sketch in arbitrary units the reflectionless Ba
man potentialnks

2
„122/cosh2@ks(x2x0)#…. We also show the asso

ciated zero-frequency bound state~BS! or translation mode and th
band of scattering states~SS! above the gapnks

2 in the spectrum.
n
-

n

in

r

f

duBS}
1

cosh2@ks~x2x0!#
, v50. ~4.4!

This zero frequency mode has a particular significance
soliton-carrying systems. SinceduBS}(du0 /dx)dx, it is
seen that the mode actually corresponds to an infinitesi
translationdx of the soliton without changing its shape. Th
mode thus restores the broken translational invariance,
sulting from the choice of a particular center of mass po
tion x0 for the soliton—a so-called translation mode. Su
Goldstone modes are quite generally associated with bro
symmetries@27,29,31#.

B. Diffusive scattering modes

In a similar way the band of scattering states has the
plicit form

duSS}
exp~ ikx!

cosh@ks~x2x0!#

k1 ikstanh@ks~x2x0!#

k2 iks
, ~4.5!

with dispersion

v52 in~k21ks
2!. ~4.6!

The modes form a continuum of spatially decaying diffusi
states scattering off the soliton. We note that the dispers
law ~4.6! for the diffusive spectrum, compared with Eq.~2.1!
for the linear case, has developed a gapnks

25l2u1
2 /4n de-

pending on the soliton amplitude. Forx→6` we have
duSS}exp@ikx1id(k)#exp(2ksuxu) and duSS}exp(ikx)exp
(2ksuxu), respectively, where the plane wave part is pha
shifted by the amount

d~k!52 tan21S ks

k D . ~4.7!

The transmission coefficient is thus given byt(k)
5exp@id(k)#, i.e., ut(k)u251, yielding the reflection coeffi-
cient r (k)50, sinceur (k)u2512ut(k)u250. Consequently,
the soliton acts as a reflectionless transparent potential on
diffusive modes which only experience a phase shift. W
also note that the bound state energy is given by the pok
5 iks in the S matrix (k1 iks)/(k2 iks); the residue in Eq.
~4.5! yields the bound state in Eq.~4.4!. Furthermore, impos-
ing periodic boundary conditions in a system of sizeN, we
obtain the density of diffusive modes

r5
N

2p
1

1

2p

dd~k!

dk
. ~4.8!

For the change of density of states owing to the presenc
the soliton,Dr5r2N/2p, we have, inserting Eq.~4.7!,

Dr52
1

p

ks

k21ks
2 . ~4.9!

We note that*r dk5N21 in accordance with Levinson’s
theorem, i.e., the band of diffusive modes is depleted by
mode corresponding to the zero frequency translation mo
In Fig. 4 we depict the phase shifted diffusive mode and

-
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2336 57HANS C. FOGEDBY
translation mode. In Fig. 5 we show the diffusive spectr
~4.6! and the pole structure in the complex wave num
plane.

Finally, regarding the stability of the soliton, we note th
the linear diffusive mode is damped according toduSS}exp

@2G(k)t# with a damping constantG(k)5n(k21ks
2). In the

long wavelength limitk→0, G(k) approaches a constan
nks

25l2u1
2 /4n, i.e., the gap in the diffusive spectrum. Th

result is, however, not in conflict with the usual argument
a vanishingG(k) for k→0, characteristic of a hydrodynam
cal diffusive mode@31#. The argument generally follow
from the conservation of the local slope or velocity~momen-
tum! implied by the structure of the Burgers equation~1.6!,
which can be written as a local conservation law

]u

]t
52¹ j , ~4.10!

with a current density

j 52¹u2
l

2
u2. ~4.11!

In the long wavelength limitk→0, the conservation law
~4.10! usually implies that the damping constantG(k)→0,
i.e., an infinitely long lived mode. This follows from

FIG. 4. In ~a! we show the phase-shifted diffusive mode sup
posed on the static soliton, indicated by a dashed line. In~b! we
depict the translation mode giving rise to a solid displacemen
the soliton without changing its shape, thus lifting the broken tra
lational invariance. The plots are in arbitrary units.
r

t

f

lim
k→0

]u~k,t !

]t
5

d

dt E u~x,t !dx52E ¹ j dx, ~4.12!

which vanishesprovided that there are no currents on th
boundariesx56N/2. However, in the presence of a solito
there is an incoming currentj (6N/2)52(l/2u)1

2 and the
mode decays with a finite lifetime 1/nks

2 in the long wave-
length limit, corresponding to a gap in the spectrum ofiv.

V. SUMMARY AND CONCLUSION

In the present paper we conducted a study of the w
documented noiseless or deterministic Burgers equation
garding it as a nonlinear diffusive evolution equation. A
though the nonlinear Cole-Hopf mapping to a line
diffusive equation in principle allows for a rather comple
analysis of the equation, we found it useful to emphasize
solitonic aspects, drawing on the parallel with other nonl
ear equations such as thef4 and the sine-Gordon equation
Note, however, that unlike thef4 or sine-Gordon equations
where the soliton owes its stability to a balance between
dispersive effect of the linear term, tending to break up
wave packet construction, and the cascade effect in w
number space due to the nonlinear term, stabilizing a part
lar wave packet form~the soliton!, the Burgers equation is
intrinsically dissipative and an initial configuration wi
eventually decay due to dissipationunlessenergy is fed into
the system. In this regard the Burgers soliton is adissipative

-

f
-

FIG. 5. In ~a! we show the spectrum of diffusive modes in th
presence of a soliton. Unlike the quadratic dispersion for the lin
diffusion equation, the spectrum here exhibits a gapnks

2 depending
on the soliton amplitude. In~b! we show the pole structure in th
complexk plane. The real axis corresponds to the band of scatte
states~SS!. The pole in theS matrix on the imaginary axis corre
sponds to the bound state~BS! or translation mode. The plots are i
arbitrary units.
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structure in that it owes its stability to the energy flux fed
the nonvanishing currents entering at the boundaries.
nonlinear term generating aninverse cascadein wave num-
ber space thus provides the energy transport to the cent
the soliton, where the energy is dissipated and the sol
owes its stability to the interplay between the linear dissi
tive term and the nonlinear mode coupling term. Nevert
less, it is useful to consider the soliton as the fundame
elementary excitationin the Burgers equation determinin
the nonlinear nonlocal relaxational aspects. As follows fr
a steepest descent analysis in the inviscid limitn→0, an
initial configuration evolves into a gas of propagating so
tons connected by ramps. The present linear stability ana
then shows that the linear modes which forl50 dominate
id

ys

et

s.

v

he

of
n
-
-

al

-
is

the relaxational by means of diffusion forlÞ0 become sub-
dominant in the sense that they develop a gap in theiv
spectrum.

In a subsequent paper we consider the Burgers equa
driven by spatially uniform stochastic noise rather that de
ministic currents at the boundaries. We find that the solito
aspects still determine the physics and that the soliton
comes abona fideelementary excitation in the underlyin
field theory.
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